Boosting-like Deep Learning For Pedestrian Detection
نویسندگان
چکیده
This paper proposes boosting-like deep learning (BDL) framework for pedestrian detection. Due to overtraining on the limited training samples, overfitting is a major problem of deep learning. We incorporate a boosting-like technique into deep learning to weigh the training samples, and thus prevent overtraining in the iterative process. We theoretically give the details of derivation of our algorithm, and report the experimental results on open data sets showing that BDL achieves a better stable performance than the state-of-the-arts. Our approach achieves 15.85% and 3.81% reduction in the average miss rate compared with ACF and JointDeep on the largest Caltech benchmark dataset, respectively.
منابع مشابه
Robust object representation by boosting-like deep learning architecture
This paper presents a new deep learning architecture for robust object representation, aiming at efficiently combining the proposed synchronized multi-stage feature (SMF) and a boosting-like algorithm. The SMF structure can capture a variety of characteristics from the inputting object based on the fusion of the handcraft features and deep learned features. With the proposed boosting-like algor...
متن کاملGroup Cost-sensitive Boosting with Multi-scale Decorrelated Filters for Pedestrian Detection
We propose a novel two-stage pedestrian detection framework that combines multiscale decorrelated filters to extract more discriminative features and a novel group costsensitive boosting algorithm. The proposed boosting algorithm is based on mixture loss to alleviate the influence of annotation errors in training data and explores varying cost for different types of misclassification. Experimen...
متن کاملBoosting algorithms for detector cascade learning
The problem of learning classifier cascades is considered. A new cascade boosting algorithm, fast cascade boosting (FCBoost), is proposed. FCBoost is shown to have a number of interesting properties, namely that it 1) minimizes a Lagrangian risk that jointly accounts for classification accuracy and speed, 2) generalizes adaboost, 3) can be made cost-sensitive to support the design of high detec...
متن کاملFlowBoost - Appearance learning from sparsely annotated video
We propose a new learning method which exploits temporal consistency to successfully learn a complex appearance model from a sparsely labeled training video. Our approach consists in iteratively improving an appearancebased model built with a Boosting procedure, and the reconstruction of trajectories corresponding to the motion of multiple targets. We demonstrate the efficiency of our procedure...
متن کاملFusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection
Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.06800 شماره
صفحات -
تاریخ انتشار 2015